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ABSTRACT

European steppe birds are facing unprecedented declines, positioning among the most threatened bird groups. We provide a comprehensive review and synthesis of
the available knowledge on Western European (WE) steppe birds, focusing on their ecology, functional traits, population range trends and major threats. Using an
expert-based participatory approach, we first created a consensual list of 37 WE species and reviewed the current knowledge on these key topics. Although 67.6 % of
species show declining population ranges, only 18.9 % are classified as Endangered or Vulnerable according to the European IUCN Red List. Notably, several species
exhibit range contractions over 5 % yet remain listed as Least Concern, indicating a need for re-evaluation based on the most up-to-date data. Threatened species have
distinct functional traits compared to non-threatened species, typically being sedentary, large-bodied, long-lived, and exhibiting ground-foraging and ground-nesting
behaviours. This highlights the potential for functional diversity loss if threatened species become extinct. Species experiencing the greatest range contractions share
many of these traits or exhibit arboreal or aerial lifestyles, carnivorous diets and partial to fully migratory behaviours. Experts identified land use change and human-
caused mortality as the main threats, followed by pollution and climate change, although the effects of the latter remain poorly understood for most species. Because
significant knowledge gaps on climate and pollution effects remain for most species, these two threats should be the focus of future investigations. This synthesis

enhances our understanding of the threats faced by WE steppe birds and provides guidance for prioritizing future research and conservation efforts.

1. Introduction

Global change is driving biodiversity loss through an unprecedented
decline in populations, species, and habitats at both local and global
scales (Brondizio et al., 2019). Early conservation efforts (prior to the
1970s) primarily focused on the strict protection of pristine sites by
restricting or excluding human activities, and the implementation of ex
situ programs for highly threatened, charismatic/flagship species (Mace,
2014). Yet, it is increasingly recognized that ‘conservation without
people’ strategies are effective in the short term (Elsen et al., 2020), and
that their long-term success is seldom achieved. Human activities
outside protected areas, detrimental illegal activities within them, and
the interconnectedness of ecological processes between protected and
non-protected regions undermine this strategy (Ament and Cumming,
2016; Elsen et al., 2020; Semper-Pascual et al., 2023). Additionally, this
approach is ineffective for conserving human-made habitats (e.g.,
Gameiro et al., 2020; Palacin and Alonso, 2018), which rely on the long-
term maintenance of specific land uses (Kremen, 2015; Phalan et al.,
2011). As a result, modern conservation strategies are shifting towards
‘conservation for people’ and/or ‘conservation with people’ approaches
(Diaz, 2023; Mace, 2014), aiming to integrate human activities with
biodiversity conservation within socio-ecological systems (Bennett
etal., 2015; CBD, 2022). These approaches require a comprehensive and
multidisciplinary understanding of how land use and other drivers of
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global change impact population and genetic diversity, as well as the
trade-offs and synergies between biodiversity conservation and other
relevant societal goals (Diaz et al., 2015).

Steppes are a prime example of socio-ecological systems, consisting
of natural and semi-natural open habitats, including natural steppes, dry
cereal farmlands, grasslands, and shrublands (Sainz Ollero, 2013). These
ecosystems are relatively flat and treeless with sparse vegetation
dominated by herbaceous plants or dwarf shrubs (Bond, 2019; Kiirsch-
ner and Parolly, 2012; Sainz Ollero and van Staalduinen, 2012; Siimegi,
2005). Natural steppes typically arise from altitudinal, climatic, and
edaphic tree-limiting conditions, while human-shaped steppes result
from the interplay of these factors with traditional low-intensity human
activities such as crop rotational systems, extensive grazing, wood har-
vesting and controlled burns to renew pastures (Henry et al., 2010;
Miller, 2005; Suarez et al., 1992; Ventresca Miller et al., 2020). How-
ever, both types of steppes are influenced by human activity to some
extent, highlighting the need to integrate conservation with sustainable
land use (Halada et al., 2011; Pérez-Granados et al., 2025). While
steppes and their wildlife have co-evolved alongside human activities
for millennia (Blondel, 2006), rapid recent changes threaten these eco-
systems and the species they sustain.

Extrazonal European steppes, isolated from their Asian counterparts
for millennia, form stable refugia and harbor unique endemic species
(Kirschner et al., 2020). Hence, preservation of European steppes is not
only key to conserving their intrinsic biodiversity but also critical for
maintaining the genetic and ecological integrity of the entire Eurasian
steppe biome (Kirschner et al., 2020). Specifically, European steppes are
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vital for bird conservation, since 55 % of European bird species on the
IUCN Red List are highly dependent on these habitats (Burfield et al.,
2023; Burfield and Van Bommel, 2004). However, the definition of
steppe birds is controversial, resulting in multiple, non-consensual
species lists (see e.g., Santos and Suarez, 2005; Suarez et al., 1997).
This controversy stems from the differences in species’ reliance on these
habitats throughout the annual cycle, which partly explains the het-
erogeneity of life-history and functional traits across species inhabiting
steppe habitats.

Functional traits provide a critical framework for understanding the
diversity of forms and functions across organisms (de Bello et al., 2021;
Mammola et al., 2021). Because functional traits shape species’ biology
and interactions with the environment, they are increasingly used to
assess impacts of global change drivers on biodiversity (Guerrero et al.,
2024; Romero-Munoz et al., 2021; Soares et al., 2022), and to prioritize
species, habitats, and ecosystems for conservation (Brum et al., 2017;
Pollock et al., 2017). Well-established trade-offs among traits constrain
organisms’ forms and functions along few independent trait dimensions,
thus limiting possible trait combinations within two - or highly
dimensional spaces, also called functional trait spaces (Carmona et al.,
2021; Diaz et al., 2016; Mouillot et al., 2021). Despite their potential,
the functional diversity of steppe birds remains poorly explored (but see
Guerrero et al., 2024). Investigating the functional space of steppe bird
species and its relationship with their threat status is therefore vital for
understanding the implications of species loss for functional diversity in
these ecosystems.

This study aims to review, update and synthesize the available
ecological knowledge on Western European steppe birds to provide a
solid scientific basis for a better design of conservation strategies. Using
an expert-based participatory approach, we first developed a compre-
hensive and consensual list of Western European steppe bird species.
The expert panel subsequently reviewed the current knowledge on the
ecology, species traits, population trends and main threats for all species
included in the list. The specific objectives of this work were to: 1)
establish an agreed-upon list of Western European steppe bird species; 2)
collect and synthesize knowledge of their population sizes, range trends
and conservation status; 3) examine the differences in the functional
space occupied by threatened and non-threatened species, and analyze
the relationships between range trends and species’ functional traits; 4)
assess the current situation of Western European steppe birds concern-
ing the main drivers of biodiversity loss and provide an overview of the
main literature on these drivers; and 5) identify key knowledge gaps for
future research. The results of this work will be useful to guide research
efforts targeting the identified knowledge gaps and to highlight the
threats faced by Western European steppe birds, facilitating an
evidence-informed design of subsequent conservation actions.

2. Methods

To review and synthesize knowledge on steppe birds, we formed a
panel of 63 active experts in different aspects of steppe ecology and
steppe bird conservation across Europe (Appendix A). Two European
countries, Spain and Portugal, accounted for 50 out of the 63 (79.4 %)
participants. This geographical bias aligns with the current distribution
of steppe birds in Western Europe, with the main populations currently
found in Spain and Portugal (Traba and Morales, 2019). In this study,
Western European steppe birds (hereafter referred to as steppe birds)
refer to species found across Europe, including the Canary Islands, but
excluding those that are restricted to eastern regions of Europe such as
western Russia, Kazakhstan, Transcaucasia, Turkey, and Cyprus (see
criteria for defining steppe birds in Section 2.1).

The expert panel’s workflow comprised three phases. In the first
phase (February 2023), the panel convened in person to define and
approve the criteria for identifying steppe bird species and to provide a
comprehensive list of these species (see Section 2.1 below). In the sec-
ond phase (June 2023), members of the expert panel received a link to a
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Google Docs document and were explicitly asked to summarize the
current situation of steppe birds and main threats. Finally, in the third
phase (September 2024) we asked the panel members to rank threats for
each species based on their scope, severity and the available knowledge
(more information in Sections 2.4 and 2.5, respectively).

2.1. Western European steppe bird species

The expert panel established a set of criteria to determine the key
characteristics that define steppe birds and identify the species that
qualify. The process began with the 26 species identified by Suarez et al.
(1997), which included steppe birds breeding in the Iberian Peninsula
and the Balearic Islands. These species were selected based on four
criteria: 1) species typical of, or very frequent in the Mediterranean
region, 2) ground-nesting species, 3) species exclusive to treeless,
mainly flat areas; and 4) species whose main European populations are
found in Spain and Portugal. This list was employed as it is widely
recognized within the scientific community as a comprehensive and
reliable foundation for identifying steppe bird species in the region (see
for example Morales and Traba, 2016; Santos and Suarez, 2005).

This list was refined by selecting those species that simultaneously
met the following expert-approved criteria: 1) core populations occur in
extensive dry farmlands, grassland or open shrubland environments in
treeless, predominantly flat zones, 2) ground-nesting in open habitats, 3)
dependence on flat, open steppe-like environments for feeding; 4)
terrestrial lifestyle and ground-foraging behaviour; and 5) ethological,
physiological or ecological adaptations to arid or low primary produc-
tivity areas. We included five species that are not ground-nesters (lesser
kestrel Falco naumanni, European roller Coracias garrulus, Iberian grey
shrike Lanius meridionalis, lesser grey shrike Lanius minor, and little owl
Athene noctua) but are strongly associated with steppe habitats
(Bustamante, 1997; Campos et al., 2011; Catry et al., 2017; Giralt et al.,
2008; Michel et al., 2017; Salek et al., 2016). Likewise, we also included
five other species that are not typically classified as steppe species in
other regions, but are associated with steppe ecosystems in Western
Europe for at least part of the annual cycle (Eurasian skylark Alauda
arvensis, northern lapwing Vanellus vanellus, European golden plover
Pluvialis apricaria, pallid harrier Circus macrourus and merlin Falco
columbarius; Gillings et al., 2007; Graham, 2006; Liminana et al., 2015;
Suarez et al., 2003). The African houbara Chlamydotis undulata, the
Berthelot’s pipit Anthus berthelotii and the Canary Islands stonechat
Saxicola dacotiae, were also included in the list, since they met several of
the criteria (Carrascal et al., 2008; Garcia-del-Rey and Cresswell, 2007;
Illera, 2001). In contrast, the black wheatear Oenanthe leucura and the
trumpeter finch Bucanetes githagineus, considered as steppe birds by
Suarez et al. (1997), were excluded. While both species are associated
with semi-arid habitats, they are linked to ravines, dry riverbeds, and
other rocky environments, including river or coastal cliffs (Manrique-
Rodriguez et al., 2003). Consequently, they are not considered steppe
specialists, as their habitat preferences and associated threats may not
accurately reflect the broader ecological and conservation challenges
faced by the majority of traditionally recognized steppe birds (e.g.,
bustards, sandgrouse and larks). The final list of steppe bird species
consisted of 37 species (Box 1).

2.2. Conservation status, population sizes and range trends

For each steppe bird species, we collected information on population
size, range trends and conservation status from: i) the second European
Breeding Bird Atlas (EBBA2), conducted by the European Bird Census
Council (EBCC, 2022), and ii) the IUCN Red List at European level
(IUCN, 2024a). We did not consider data from the Pan-European Com-
mon Bird Monitoring Scheme (PECBMS) since population trends were
not available for most species. While the present study focuses on
Western European steppe birds, information on population size, range
trends and conservation status are provided at the broader European
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Box 1

List of WE steppe bird species, compiled based on the criteria outlined in the
Methods section. The table includes the change index, which quantifies the
magnitude of change in square occupancy between EBBA1 and EBBA2, and the
conservation status (threat categories) according to the IUCN Red List at Euro-
pean level. Detailed data regarding population size of each species are provided
in Appendix D.

Family Species Change TUCN status
index
Accipitridae Hen harrier Circus cyaneus -17.0 Least Concern
Montagu’s harrier Circus 6.4 Least Concern
pygargus
Pallid harrier Circus macrourus 0.1 Least Concern
Alaudidae Calandra lark Melanocorypha -85 Least Concern
calandra
Crested lark Galerida cristata —11.6 Least Concern
Dupont’s lark Chersophilus -1.6 Vulnerable
duponti
Eurasian skylark Alauda arvensis -2.7 Least Concern
Lesser short-toed lark Alaudala —20.9
rufescens
Short-toed lark Calandrella -10.5 Least Concern
brachydactyla
Thekla lark Galerida theklae 4.5 Least Concern
Burhinidae Stone curlew Burhinus -2.3 Least Concern
oedicnemus
Charadriidae European golden plover Pluvialis -3.1 Least Concern
apricaria
Northern lapwing Vanellus -1.6 Vulnerable
vanellus
Cisticolidae Zitting cisticola Cisticola juncidis 10.9 Least Concern
Coraciidae European roller Coracias garrulus ~ —20.2 Least Concern
Emberizidae Corn bunting Emberiza calandra 0.1 Least Concern
Falconidae Lesser kestrel Falco naumanni -14.3 Least Concern
Merlin Falco columbarius -5.0 Vulnerable
Glareolidae Cream-coloured courser Near
Cursorius cursor Threatened
Collared pratincole Glareola —4.6 Least Concern
pratincola
Laniidae Iberian grey shrike Lanius —4.4 Vulnerable
meridionalis
Lesser grey shrike Lanius minor -10.7 Least Concern
Motacillidae Berthelot’s pipit Anthus Least Concern
berthelotii
Tawny pipit Anthus campestris —4.5 Least Concern
Muscicapidae  Black-eared wheatear Oenanthe -10.8 Least Concern
hispanica
Canary Islands stonechat Near
Saxicola dacotiae Threatened
Northern wheatear Oenanthe -3.0 Least Concern
oenanthe
Otididae African houbara Chlamydotis Vulnerable
undulata
Great bustard Otis tarda -23.3 Least Concern
Little bustard Tetrax tetrax —14.9 Vulnerable
Phasianidae Common quail Coturnix coturnix 8.6 Near
Threatened
Red-legged partridge Alectoris 5.7 Near
rufa Threatened
Pteroclidae Black-bellied sandgrouse -5.4 Endangered
Pterocles orientalis
Pin-tailed sandgrouse Pterocles —24.6 Least
alchata Concerned
Strigidae Little owl Athene noctua -3.8 Least Concern
Short-eared owl Asio flammeus -1.8 Least Concern
Sylviidae Spectacled warbler Sylvia 4.5 Least Concern

conspicillata

scale. This includes data from the western regions of Russia and
Kazakhstan, Transcaucasia, Turkey and Cyprus, as well as nearby
archipelagos in the Atlantic, Arctic, and the Mediterranean Sea (see
Appendix B). We use data at this scale because it represents the most
recent and standardized information currently available.

Using data from EBBA2, we compiled the number and percentage of
50-km squares where each species occurred, along with a change index
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that quantifies shifts in the number of occupied squares between the first
European Breeding Bird Atlas (EBBA1, monitoring period between 1972
and 1995) and EBBA2 (monitoring period between 2013 and 2017). For
a detailed description of the methodology used to estimate this change
index and other aspects of EBBAs, see Keller et al. (2020).

Additionally, we included the population trend classification (i.e.
Loss, Stable, Gain, Uncertain trend) and the associated level of certainty
in this classification provided by EBBA2. Information on European
population size (defined as the number of mature individuals) was ob-
tained from the IUCN Red List at European level. Conservation status
(threat category) and population size trends in Europe were obtained
from the IUCN Red List. We did not consider more recent estimates of
population sizes and trends because they were available for a handful of
species only (e.g., great bustard - Alonso and Palacin, 2022 - African
houbara - Alonso et al., 2020a; Carrascal, 2022; Ucero et al., 2021 -
Canary Islands stonechat - Illera et al., 2024, among others; see Ap-
pendix D for more information).

2.3. Functional traits

We compiled trait data from our own measurements derived from
multiple research projects over the past decades and from the primary
scientific literature, including databases, books, and scientific papers.
Based on literature and expert knowledge, we collected information on
traits related to morphology, life history, distribution and abundance,
behaviour, foraging and nesting habitats, diet, and migration. Addi-
tionally, we derived relative brain size as the residual of the log-log
relationship between brain size and body mass (Sol et al., 2007) and
retrieved this trait for further analyses (traits are listed in Appendix C).

We described the functional space occupied by threatened and non-
threatened steppe bird species (see Section 2.2 Conservation status,
population sizes and range trends), and calculated their functional
richness (FRic), i.e. the proportion of the functional space occupied by
threatened and non-threatened species relative to the entire assemblage
(Villéger et al., 2008). Before undertaking the functional diversity (FD)
analyses, we checked the distribution of variables, identified missing
data, and assessed the collinearity among continuous traits using a
Pearson’s correlation test (Palacio et al., 2021). We discarded redundant
traits (r > 0.5) or those representing similar functions and forms in the
functional space (e.g., degree of development — precocial vs. altricial —
was discarded over a development continuum index, trophic level was
discarded over trophic niche, see definitions in Appendix C). We
imputed missing values for traits with incomplete data with the R
package “missForest” (Stekhoven and Bithlmann, 2012). Imputed traits
were birth or hatching weight (17 missing values), absolute brain size
(15), habitat breadth (2), eye axial length (20), eye transverse diameter
(25), and population density (1). To homogenize the distribution of
variables, we log-transformed all continuous variables without negative
values. We also standardized all continuous traits to mean = 0 and
standard deviation = 1 to ensure comparable ranges among traits.

Next, we built a species * trait matrix, and a threatened/non-threatened
* species matrix, with the latter representing the presence/absence of
each species in each category (i.e., threatened or non-threatened steppe
bird species according to their European IUCN status; Appendix D).
Because our trait matrix contains both continuous and categorical var-
iables, we used the Gower distance to estimate trait dissimilarity among
species (Gower, 1971; Laliberté and Legendre, 2010). We weighed traits
equally and applied a principal coordinate analysis (PCoA) ordination
based on the distance matrix to build a multidimensional functional
space.

We visualized the trait space as the first two axes of the PCoA using
the trait dissimilarity matrix as input data, using the R package ‘ape’
(Paradis and Schliep, 2019). To relate traits to the ordination axes, we
used the function envfit from the R package ‘vegan’ (Oksanen, 2009).
This function calculates a multiple linear regression of the traits
(dependent variable) and species scores on ordination axes
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(independent variables). The normalized regression coefficients multi-
plied by the square root of the coefficient of determination are used to
position the trait onto the ordination diagram. Subsequently, we esti-
mated the density of species on the ordination diagram using a kernel
density function. Lastly, we calculated FRic (functional richness) for
threatened and non-threatened species. Because FRic is highly influ-
enced by species richness (i.e., a higher number of species can lead to a
broader range of traits), we calculated the Standardized effect size of
FRic (SESFRic) as (mean observed FRic - mean expected FRic)/(SD of
expected FRic). Expected values of FRic were generated based on 999
permutations of the community matrix using the “independent swap”
null model, which randomizes the data matrix and maintains the orig-
inal species richness. We performed all FD analyses in the R package
“mFD” (Magneville et al., 2022) and used the function randomizeMatrix
from the R package “picante” (Kembel et al., 2010) to generate the null
models.

We analyzed relationships between range trends and species’ posi-
tions within the trait space defined by the first two axes of the PCoA
using phylogenetic generalized least squares (PGLS) regressions to ac-
count for potential non-independence due to shared evolutionary his-
tory (Freckleton et al., 2002). We estimated the phylogenetic scaling
parameter lambda (A), which ranges from O (indicating phylogenetic
independence) to 1 (indicating complete phylogenetic trait conserva-
tism or dependence; Freckleton et al., 2002) and derived phylogeneti-
cally corrected model estimates. A consensus phylogeny for the studied
species was constructed using Mesquite software (Maddison and Mad-
dison, 2011). We used the consensus tree based on 100 Ericson trees
extracted from the phylogeny published by (Jetz et al., 2012) (birdtree.
org). We conducted the analyses using the R packages “ape” (Paradis
and Schliep, 2019), “MASS” (Venables and Ripley, 2002), and
“mvtnorm” (Genz et al., 2021), and the function pglm3.3.r. All analyses
were performed in R (R Core Team, 2024).

2.4. Overview of main threats to steppe birds

The expert panel evaluated the current status of steppe birds in
relation to the main drivers of biodiversity loss. Participants were pro-
vided with a Google Docs link and explicitly asked to summarize the
current situation of steppe birds in relation to the first eight targets of the
Kunming-Montreal Global Biodiversity Framework (KM-GBF, CBD,
2022). We used the first eight KM-GBF targets because they aim to halt
biodiversity loss by addressing its main drivers, including land use
change, overexploitation, invasive species, climate change, and pollu-
tion (see Pérez-Granados et al., 2025 for more details). These targets
include i) protecting, managing, restoring, and connecting at least 30 %
of key areas (Targets 1, 2, and 3), ii) ensuring management actions to
reduce extinction risk for threatened species and promoting sustainable
use of species and ecosystems (Targets 4 and 5), iii) preventing or
reducing the introduction and establishment of invasive alien species
(Target 6), iv) reducing nutrient loss to the environment and the use of
pesticides (Target 7), and v) contributing to climate change mitigation
and adaptation (Target 8; CBD, 2022). During the process, experts
iteratively shared their input, proposing new arguments or editing the
existing ones based on direct and ongoing feedback from fellow par-
ticipants and the team who facilitated the process. The responses were
compiled and synthesized by a core team leading the writing of the
manuscript (Appendix A).

2.5. Species-specific threats and knowledge gaps

The expert panel also ranked the identified threats for each species
based on their expert criteria (see Appendix E for detailed instructions
and the table provided to the experts). For simplicity, the identified
threats were classified into six main groups, related to the eight KM-GBF
targets: 1) land use change (e.g., agriculture, afforestation, urbanization,
infrastructure development); 2) human-induced mortality (e.g., non-
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natural mortality caused by agricultural practices such as ploughing
and mowing, collisions and electrocutions with human infrastructures,
or increased predation due to land use changes or other human activ-
ities, among others); 3) unsustainable exploitation (e.g., hunting or
poaching); 4) pollution (e.g., noise or light pollution, agrochemical use in
agriculture); 5) invasive species (i.e., introduction of non-native birds,
plants, etc.); and 6) climate change (e.g., shifts in the distribution of
suitable environmental conditions).

Following the IUCN criteria (IUCN, 2024b), experts were instructed
to classify each threat according to its scope (i.e., the proportion of the
total population affected: high > 90 %, medium 50-90 %, low < 50 %,
or unknown) and severity (i.e., the impact on population trends over 10
years or three generations, whichever is longer: high > 20 % decline,
medium < 20 % decline, low or negligible decline, or unknown).
Additionally, participants were asked to indicate whether they had
direct experience with the species-threat interaction and to rate their
confidence in the classification based on their level of knowledge: i) High,
if they had extensive knowledge on the subject (e.g., >5 articles avail-
able); ii) Medium, for moderate knowledge (2-5 articles); and iii) Low,
for limited knowledge (<2 articles). Threats were specifically evaluated
for species in steppe environments, as the main threats to species in
other habitats (e.g., during migration or in other habitat types for more
generalist species) may differ or present distinct challenges. The infor-
mation from these tables was summarized to rank the threats to Euro-
pean steppe birds and to assess the current knowledge on these threats,
with the aim of identifying key knowledge gaps.

3. Results and discussion
3.1. Conservation status, population sizes and range trends

Overall, European steppe bird populations are declining. Data from
the EBBA2 show that 25 (67.6 %) of the 37 selected steppe bird species

are experiencing range contractions. Additionally, population estimates
for 7 (18.9 %) species are highly uncertain, and trends remain unknown
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Fig. 1. Change index (%) in the number of occupied 50-km squares between
EBBA1 (1972-1995) and EBBA2 (2013-2017) for Western European steppe
birds. Berthelot’s pipit Anthus berthelotii, African houbara Chlamydotis undulata,
cream-coloured courser Cursorius cursor and Canary Islands stonechat Saxicola
dacotiae are excluded due to unknown trends during the elaboration of EBBAs
(see Box 1).
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for 4 (10.8 %) species. The change index reflected an average loss of 5.8
% (9.1 SD) 50-km occupied squares between EBBA1 (1972-1995) and
EBBA2 (2013-2017), with values ranging from —24.6 to 10.9 (Box 1;
Fig. 1). Small values reported are, however, biased by the large spatial
scale (50 x 50 km) considered in the study. Species exhibiting the
greatest range contraction (>20 %) include pin-tailed sandgrouse
Pterocles alchata, great bustard Otis tarda, lesser short-toed lark Alaudala
rufescens and European roller Coracias garrulus. In contrast, other species
are expanding their ranges (>5 %), such as the common quail Coturnix
coturnix, Montagu’s harrier Circus pygargus and red-legged partridge
Alectoris rufa. Meanwhile, species like corn bunting Emberiza calandra
and pallid harrier Circus macrourus exhibit stable ranges (Box 1; Fig. 1).

It is important to note, however, that range trends do not always
align with abundance trends. For example, while Montagu’s harrier, red-
legged partridge and common quail have increased their occupancy
between the two EBBAs (Box 1; Fig. 1), these species have suffered sharp
population declines in certain areas (Cabodevilla et al., 2021b; Gameiro
et al., 2024; SEO BirdLife, 2019; Souchay et al., 2022). This apparent
discrepancy may be influenced by improved monitoring techniques,
larger survey efforts, or restocking practices, all of which contribute to
the higher number of confirmed presences. Likewise, the range of trends
described at the European scale, may differ from those found at national
or regional scales.

While the population size of many species may still be considered
large, others show strong negative population trends (e.g., little bustard
Tetrax tetrax in Spain and Portugal: 50 % decline in 10 years, and France:
90 % decline in 20 years, Morales and Bretagnolle, 2022; Canary Islands
stonechat: 63-70 % decline in 20 years, Illera et al., 2024; Dupont’s lark
Chersophilus duponti: 2.3 % average annual decline, Reverter et al., 2023;
great bustard in Portugal, Spain and European Russia, with declines of
50 %, 28 % and 73 % respectively in the last 10-15 years, Alonso and
Palacin, 2022; lesser kestrel in Spain: 6 % average annual decline;
Aparicio et al., 2023; Bustamante et al., 2020). Some formerly wide-
spread species are now threatened (e.g., black-bellied sandgrouse
Pterocles orientalis — Mougeot et al., 2021, Mougeot et al., 2024, little
bustard — Morales and Bretagnolle, 2022, both Endangered in Spain),
and for others, information on population size and range trends remains
limited or outdated (Appendix D). Finally, some species that were
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considered stable or increasing are now known to be declining and their
situation is very critical (e.g., the African houbara - Alonso et al., 2024a -
or the Canary Islands stonechat - Illera et al., 2024). This underscores the
need for comprehensive and species-specific systematic monitoring to
better understand population dynamics and inform conservation
strategies.

Despite the declining status of most steppe bird species, only a small
proportion are classified as threatened on the IUCN Red List at European
level (Box 1; Appendix D). Specifically, 2.7 % are listed as Endangered
(n =1, black-bellied sandgrouse), 16.2 % as Vulnerable (n = 6, Dupont’s
lark, African houbara, little bustard, merlin, Iberian grey shrike and
northern lapwing), 10.8 % as Near Threatened (n = 4, cream-coloured
courser, red-legged partridge, common quail, and Canary Islands
stonechat), and 70.3 % as Least Concern (n = 26). However, it is note-
worthy that some species listed as Least Concern, such as the great
bustard, the pin-tailed sandgrouse, and the European roller, have
experienced range contractions in Europe, with declines between 20.2 %
to 24.6 % (Box 1; Appendix D).

3.2. Functional traits

The first two dimensions of the functional space explained 73 % of
the trait variation (Fig. 2A). PCoAl explained 50 % of the variation and
was linked to morphological traits such as wing size (length and Kipp’s
distance), body length, beak size (length, width, depth) and tarsus
length, life history traits (maximum longevity, fledging age, incubation
period and hatching weight), and habitat density (Fig. 2A). This
dimension separated species with large body size, high longevity and
high reproductive investment (slow pace of life) and a preference for
open habitats (positive values), from small-sized, and fast-living species
associated with semi-open habitats. Correspondingly, species belonging
to the families Otididae, Burhinidae and Accipitridae were positioned
towards positive values, whereas members of the families Sylviidae,
Muscicapidae and Cisticolidae were positioned towards the negative end
(Fig. 2B). PCoA2 explained 23 % of the trait variation, depicting a
gradient from species with terrestrial lifestyle, ground foraging, ground
nesting and sedentary behaviour, non-carnivorous diet, as well as small
relative brain size (positive values) to species with aerial to insessorial
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Fig. 2. Trait space representation for Western European steppe birds. (A) Distribution of steppe birds along the first two axes of a principal coordinate analysis
describing the trait similarity among species. Colour gradients denote species density, with higher density in darker areas. The position of the most representative
traits on each axis is mapped on the ordination diagram. (B) Same as (A) but mapping the position of each family onto the ordination diagram. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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lifestyles (aerial, arboreal and shrub foraging and nesting), with partial
to full migratory behaviour, carnivorous diet, and large relative brain
size (negative values) (Fig. 2A). Terrestrial species that typically nest
and forage on the ground include those from the families Pteroclidae or
Alaudidae (positive values in PCoA2, Fig. 2B), which in turn are sepa-
rated along the PCoA1l axis due to their different pace of life.

Threatened steppe bird species (n = 7) had a smaller functional trait
space than non-threatened (n = 30) species (SES.FRic = 0.46 vs 0.27,
Fig. 3). The functional trait space of threatened steppe bird species was
characterized by a major hotspot of large-sized, long-lived species
(positive values of PCoAl), with ground foraging and ground nesting
behaviours, as well as sedentariness (negative values of PCoA2). In
contrast, non-threatened steppe bird species showed a larger functional
trait space, with a moderate clustering of species with small body size
and fast pace of life (Fig. 3). Hence, extinction risk in steppe birds is not
randomly distributed across the functional trait space but predomi-
nantly affects large-sized, long-lived species (Fig. 3).

Range trends tended to be negatively related with PCoAl (B =
—15.39 £ 8.89 SE, t = —1.73, n = 33, p = 0.093), and were quadratically
related with PCoA2, with peak positive trends at intermediate values
(B; = —18.76 + 13.55 SE, t = —1.38, p = 0.176 and By = —326.53 +
140.33 SE, t = —2.33, p = 0.027 for the linear and quadratic terms,
respectively; Fig. 4). Phylogenetic effects were negligible (lambda =
6.5e-05, chi-square = —0.0004 and lambda = 7.2e-05, chi-square =
—0.0005 for the PCoAl and PCoA2 models, respectively; df = 33, p >
0.99 in both cases). Larger steppe bird species with slower pace of life
tended to experience more severe range contractions than smaller, fast-
living species, consistent with findings from other taxa and guilds
(Saether et al., 2013). Steppe specialists and avian predators associated
with tree patches (e.g., raptors other than harriers) exhibited stronger
range contractions than generalist steppe birds.

3.3. Overview of main threats to steppe birds
The following summarizes the results of the expert-based review,

which offers a detailed analysis of the current situation regarding the
major threats to steppe birds and their habitats.
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3.3.1. Land use change

In Europe, steppe bird diversity hotspots often occur in low human
population density areas and rural agricultural landscapes, representing
traditional extensively managed socio-ecological systems (e.g., Palacin
et al., 2012). Despite supporting biologically valuable communities of
endangered species, steppes are often perceived as landscapes of low
economic and biodiversity value (Diaz et al., 2020), compared to wet-
lands or forests (Garcia-Llorente et al., 2020). In recent decades, steppes
with adequate edapho-climatic conditions or access to irrigation have
faced agricultural intensification (Brotons et al., 2004; Silva et al., 2022,
2023b), while less productive steppes are increasingly threatened by
industrial or renewable energy infrastructure development (Bolonio
et al., 2024; Laiolo and Tella, 2006; Manosa et al., 2020; Palacin et al.,
2023; Serrano et al., 2020; Valera et al., 2022). Together, intensification,
land abandonment, and infrastructure expansion drive habitat loss and
degradation.

Addressing these challenges requires a comprehensive approach that
balances biodiversity conservation with socio-economic needs. The
conservation of steppe birds and their habitats is closely intertwined
with the support of rural communities and the promotion of extensive
land management practices. The main specific threats are:

a) agriculture expansion, intensification and specialization (Alonso
et al., 2020Db; Brotons et al., 2004; Cabodevilla et al., 2022; Cardador
et al., 2015; Catry et al., 2012; De Frutos et al., 2015; Dengler et al.,
2014; Giralt et al., 2021; Traba and Morales, 2019),

b) intensification of livestock management (Faria and Morales, 2020;
Silva et al., 2023b),

c) conversion to woody crops, such as olive groves, traditional and
trellis vineyards, pistachio and almond trees (Cabodevilla et al.,
2021a; Casas et al., 2020; Diaz et al., 1998, 2022; Guerrero-Casado
et al., 2022; Morgado et al., 2020, 2022),

d) afforestation promoted by agricultural policies (Diaz et al., 1998),

e) the abandonment of extensive agriculture or livestock in low pro-
ductive areas (Catry et al., 2013; Traba and Pérez-Granados, 2022),
and

0.50

0.25

0.00 <

PCoA 2 (23%)

-0.25

-0.50

-0.50 -0.25 0.00 0.25 0.50

PCOA 1 (50%)

Fig. 3. Trait space for non-threatened (left) and threatened (right) steppe bird species, mapping the centroid of each type of steppe bird category (black and white
dot) onto the ordination diagram. Positive values in PCoA1 are associated with large body size, high longevity and high reproductive investment (slow pace of life)
and a preference for open habitats, whereas small-sized, and fast-lived species linked to semi-open habitats are associated with negative values. PCoA2 separates
species with terrestrial lifestyle, ground foraging, ground nesting and sedentary behaviour, non-carnivorous diet, as well as small relative brain size (positive values),
from species with aerial to insessorial lifestyles, with partial to full migratory behaviour, carnivorous diet, and large relative brain size (negative values).
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carnivorous diet, and large relative brain size (negative values).

f) urbanization and development of large-scale human infrastructures
(i.e. renewable energy plants, power lines, industrial areas and
roads) (Arroyo et al., 2022; Bolonio et al., 2024; Gomez-Catasts
et al., 2018; Hermoso et al., 2023; Illera et al., 2010; Lopez-Jamar
et al., 2011; Marcelino et al., 2018; Marques et al., 2020, 2021;
Palacin et al., 2023; Santangeli et al., 2023; Serrano et al., 2020;
Silva et al., 2022, 2023a; Torres et al., 2011; Valera et al., 2022).

The severity of these threats varies geographically and over time. For
example, afforestation and woody crop expansion are more threatening
in southern areas dominated by annual crops or in natural steppes (e.g.
Concepcion and Diaz, 2019; Kamp et al., 2015), while renewable energy
impacts are driven by shifting global energy markets (Gomez-Catastis
et al., 2024). However, in some cases, land use extensification have had
positive impacts, such as the conversion of tree crops to low shrublands
for extensive livestock grazing in southern Spain (Lopez-Iborra et al.,
2015).

3.3.2. Increased human-induced mortality

Human-induced mortality significantly lowers the survival rates of
many steppe-land birds (Alonso et al., 2024a; Benitez-Lopez et al., 2015;
Marcelino et al., 2018; Salek et al., 2019), contributing to their high
extinction risk. Key causes include agricultural practices (e.g., ploughing
and mowing during breeding), as well as starvation from reduced food
supply due to intensive agricultural management (Casas and Vinuela,
20105 Ortiz-Santaliestra et al., 2020). Habitat fragmentation, urbaniza-
tion, agricultural intensification, land abandonment, and loss of tradi-
tional activities increase the abundance and activity of mesopredators
and/or anthropophilic predators, that threaten ground-nesting birds
(Bravo et al., 2020, 2022; Gomez-Catasts et al., 2021; Gordon et al.,
2017; McMahon et al., 2020; Sélek et al., 2015; Whittingham and Evans,
2004). High levels of nest and chick predation lead to severe repro-
ductive failures for many ground-nesting species (e.g., Macdonald and
Bolton, 2008; Roos et al., 2018). Collisions with power lines represent a
major source of human-induced mortality for steppe birds, further
endangering their populations (Marques et al., 2021; Palacin et al.,
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2017; Silva et al., 2022).

3.3.3. Unsustainable exploitation

Most steppe bird species are not hunted, traded, or exploited due to
legal restrictions, as past hunting contributed to their current threatened
status (e.g., great and little bustards, Marcelino et al., 2018; but not
European golden plover or northern lapwing). Historically, Eurasian
skylarks, calandra larks Melanocorypha calandra, and other species were
heavily trapped for food in countries like Spain, Italy and France (Suarez
et al., 2009), but this practice is now residual and does not significantly
impact current population.

The red-legged partridge and the common quail remain important
game species, at least in the Iberian Peninsula (Arroyo et al., 2012), but
unsustainable management threatens their wild populations. Over-
hunting (Casas et al., 2016), hybridization with birds released for ‘game
restocking’ (Blanco-Aguiar et al.,, 2008) and pathogen spillover
(Cabodevilla, 2021; Villantia et al., 2007) have contributed to their
decline. Despite the millions of farm-raised birds being released annu-
ally for hunting purposes in Spain (Cabodevilla et al., 2020; Tarjuelo
et al., 2021), hunting pressure has led to a 51 % decline in red-legged
partridge density from 2010 to 2017 (Cabodevilla et al., 2021b), lead-
ing to its reclassification as Near Threatened by the IUCN. In turn, the
range and population size of common quail in Spain have declined by at
least 45.3 % and 50 %, respectively, over the last decades and the species
has been proposed to be listed as Endangered nationally (Diaz, 2021;
Medrano-Vizcaino et al., 2025). Migratory species face additional risks
as hunting on breeding grounds can be exacerbated by hunting pressure
on their migratory, wintering and/or stopover areas (Brochet et al.,
2016; Kovacs et al., 2008). For instance, little bustards are legally
hunted in parts of the Middle East and Asia during migration or at
wintering grounds (Collar et al., 2017; Morales and Bretagnolle, 2022).
Poaching of protected species, although in a minority, still persists
(Benitez-Lopez et al., 2015; Marcelino et al., 2018; Martin et al., 2007;
Silva et al., 2022).

3.3.4. Pollution

The use of herbicides, pesticides, and fertilizers produces lethal or
sublethal effects on birds and reduces the number and diversity of arable
weeds and invertebrates, which are key for hosting food resources for
farmland birds. Fertilizers, pesticides and veterinary products like
ivermectin also impact dung and soil organisms, reducing habitat
quality and food availability (Tonelli et al., 2017). These effects can
extend beyond crop boundaries (Reverter et al., 2021) and are partic-
ularly acute during the breeding period when nestlings rely on in-
vertebrates for food. Herbicides and pesticide-coated seeds have been
linked to reduced breeding success in ground-nesting birds (Fernandez-
Vizcaino et al., 2020; Gandara et al., 2024; Lopez-Antia et al., 2018;
Ortiz-Santaliestra et al., 2020). Drip fertigation (i.e., injection of fertil-
izers into the irrigation system) may also negatively affect steppe birds
(Cabodevilla et al., 2021a, 2022). While it reduces the amount of ni-
trates supplied, the remaining nitrates become highly concentrated in
limited water resources in rainfed areas, potentially creating an
ecological trap that attracts birds in summer. This issue requires further
attention.

Other pollutants, such as noise pollution, can affect the behaviour of
steppe birds. For example, little bustard males showed higher calling
rates at sites with heavy traffic noise (Barrero et al., 2020), and wind
turbine noise caused spectro-temporal shifts in Dupont’s lark vocaliza-
tions (Gomez-Catasus et al., 2022). However, the broader implications
of these vocal changes, such as their impact on energy expenditure or
key communication functions (e.g., mate attraction and territory de-
fense), remain unknown.

3.3.5. Invasive species
Invasive alien plant species are not currently a major threat to Eu-
ropean steppe habitats, but certain steppe areas could face risks from
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their expansion in the future. Previous research in Europe and North
America has suggested that invasive species may contribute to the
encroachment of steppe habitats through the spontaneous spread of
shrub vegetation, which may reduce habitat quality for open-habitat
species, including most steppe birds (Nicolli et al., 2020). We lack
knowledge about the potential impacts of invasive animals, plants,
parasites or pathogens on steppe birds. Anecdotal evidence suggests that
introduced domestic species, such as feral or free-ranging cats may be a
problem (e.g. through nest predation) at least on a local scale (Illera and
Diaz, 2006; Pérez-Granados et al., 2017). Similarly, the introduction of
allochthonous species for hunting can result in hybridization of native
species with unknown consequences on their populations (e.g., common
quail; Puigcerver et al.,, 2013). In island-dwelling species, invasive
parasites can also have negative consequences (Carrete et al., 2009;
Illera et al., 2008).

3.3.6. Climate change

Climate change is a major driver of biodiversity loss, affecting all
taxonomic groups, including steppe birds and their interactions
(Ockendon et al., 2014). Due to their high metabolic rates and the need
for efficient temperature regulation (Rastogui, 2007), steppe bird spe-
cies are particularly vulnerable. Given projected climate change sce-
narios, increasing temperatures may negatively impact their range,
reproduction, and survival (see for example, Catry et al., 2015; Kiss
et al., 2020). Microclimate refugia may become essential for the
persistence of steppe bird populations under these changing conditions
(Ramos et al., 2023a,b), and conservation actions, such as nest-site
provisioning, may need to be tailored to enhance the species’ resil-
ience to climate change (Catry et al., 2011).

Recent studies have demonstrated how extreme weather events can
negatively impact population dynamics and breeding success of steppe
birds (Alonso et al., 2024b; Illera and Diaz, 2006; Marcelino et al., 2020;
Pérez-Granados et al., 2023; Ucero et al., 2024). Likewise, changes in
rainfall regimes can result in significant population declines and even
the collapse of steppe bird populations (Illera et al., 2024), likely due to
impacts on survival rates (Delgado et al., 2009) and reproduction, which
is primarily influenced by changes in food availability (Illera and Diaz,
2006). Severe storms can destroy nest clutches, further exacerbating
reproductive challenges. High temperatures can increase inactivity,
affecting breeding and foraging patterns, further compromising
breeding success and overall population dynamics (Gudka et al., 2019;
Silva et al., 2015). These conditions may also impose physiological stress
on chicks and fledglings, negatively affecting growth and body condition
(Catry et al., 2011, 2015). In some species, high summer temperatures
may force individuals to migrate, increasing mortality risks (Alonso
et al., 2009; Palacin et al., 2017). Climate change is also likely to
constrain or shift the future distribution of steppe birds (Kiss et al.,
2020), reducing connectivity among populations (Aratjo et al., 2011;
Estrada et al., 2016). Conversely, climate change may expand optimal
habitats for thermophilic species (Ramon-Martinez and Seoane, 2024),
such as collared pratincole Glareola pratincola, which has recently
expanded its distribution range.

3.4. Species-specific threats and knowledge gaps

We collected threat assessments from 63 experts (Appendix F, Table
F1), although the number of assessments varied across species (Appen-
dix F, Table F2) and threats (Appendix F, Table F3). Land use change
emerged as the primary driver of population declines, with the highest
severity, scope and knowledge scores. Human-induced mortality was
also identified as a key driver of population declines, with moderate
severity and scope. In contrast, climate change, pollution, and unsus-
tainable exploitation were deemed low-severity threats. Nonetheless,
climate change affects a substantial proportion of populations (medium
scope) and is associated with the least available knowledge (see, Illera
et al., 2024). Invasive species were considered of lesser concern for
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Human-induced mortality
Unsustainable explotation
Pollution

@ Climate change

@ Invasive alien species

Scope

Fig. 5. Threats to steppe birds and their habitats as a function of their severity (i.e., the impact on population trends over 10 years or three generations, whichever is
longer), scope (i.e., proportion of the total population affected), and knowledge available based on expert judgments (63 experts and 37 steppe-bird species). Scope
and severity are categorized as Unknown (0), Low (1), Medium (2), High (3), and knowledge as Low (1), Medium (2), High (3).

steppe birds, affecting only a small fraction of populations, especially on
mainland rather than island populations (Fig. 5; Appendix F, Table F1).

Threats decreased proportionally in scope, severity, and available
knowledge, except for climate change which scored high in scope but
ranked second lowest in knowledge (Fig. 5). Similarly, pollution was
rated moderate in both scope and severity, yet knowledge of its impacts
remains limited. Our results suggest that future research should priori-
tize evaluating the effects of climate change and pollutants on steppe
bird populations and their habitats. While knowledge of invasive species
and unsustainable exploitation is also limited, these factors do not
appear to be major drivers of steppe bird declines, at least for the
mainland species and populations.

Among the species assessed, the five with the least information on
specific threats were black-eared wheatear Oenanthe hispanica, Iberian
grey shrike, thekla lark Galerida theklae, stone curlew Burhinus oedicne-
mus and black-bellied sandgrouse (Appendix F, Table F2). Land use
change impacts remain poorly understood for stone curlew and for both
Pterocles species (Appendix F, Table F3). Significant knowledge gaps also
exist regarding human-induced mortality on thekla lark, red-legged
partridge, and common quail, and climate change impacts on
Dupont’s lark, Eurasian skylark, thekla lark, Iberian grey shrike, black-
eared wheatear or black-bellied sandgrouse (Appendix F, Table F3).
Pollution-related knowledge gaps are particularly evident for lesser
kestrel, Iberian grey shrike, hen harrier Circus cyaneus and stone curlew.
Understanding of unsustainable exploitation and invasive species aligns
with their severity and scope scores (Appendix G). It is important to note
that our focus is on threats within steppe environments, and threats
faced in other habitats—such as during migration or for generalist
species—may differ or pose distinct challenges.

4. Conclusions

This review updates and synthesizes the existing information on the
population size, trends, and status of Western European steppe birds,
and provides an overview of the main drivers of decline for these spe-
cies. Additionally, it presents, for the first time, a characterization of the
functional space of steppe birds and identifies traits associated with
threat status and declining range trends. We established a consensual list
of steppe bird species and found an alarming decline in this group of
birds. Despite their declining trends, only 18.9 % of the species
considered are currently listed as Endangered or Vulnerable on the IUCN
Red List of Threatened Species at European level. This suggests that the
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status of several species, such as pin-tailed sandgrouse, great bustard,
lesser short-toed lark, European roller, hen harrier, lesser kestrel, and
crested lark Galerida cristata (among others with a declining index > 5 %
but classified as Least Concern), warrants re-evaluation based on the
most up-to-date information available (see Appendix D). Furthermore,
substantial uncertainties in population estimates for certain species
emphasize a critical need for more robust and comprehensive moni-
toring efforts. While we used EBBA data to standardize comparisons
among species, more recent data are available for certain species, such
as the great bustard (Alonso and Palacin, 2022), African houbara
(Alonso et al., 2020a, 2024a; Carrascal, 2022; Ucero et al., 2021), or
Canary Islands stonechat (Illera et al., 2024) (Appendix D). These
updated datasets should be prioritized in species-specific re-evaluations.

The characterization of the functional space of steppe birds deepens
our understanding of the traits that make a species more prone to
extinction. Our findings indicate that traits are not randomly distributed
according to threat status in steppe birds. Threatened species occupy a
narrow yet distinct part of the functional space, dominated by large,
long-lived species (but see, Illera et al., 2024) with ground-foraging and
ground-nesting behaviours, along with sedentary tendencies-traits often
associated with low reproductive rates and high sensitivity to environ-
mental change, which likely contribute to their heightened extinction
risk (see similar results in Seoane et al., 2011). These findings highlight
that the most specialist steppe birds are also the most vulnerable ones
(Guerrero et al., 2024), whereas non-threatened species occupy a
broader functional space, reflecting a wider range of ecological strate-
gies that may enhance their resilience to environmental pressures. This
stark differentiation in functional space underscores the potential loss of
functional diversity that will occur if the most vulnerable species
become extinct, either locally or nationally. Our results also showed that
species characterized by large size, long lifespan, terrestrial foraging,
and ground nesting behaviour, as well as those with aerial to perching
lifestyles, partial to full migratory behaviour, and carnivorous diet, are
experiencing the greatest range declines, which helps infer particular
drivers of change. These results could guide future research on the most
threatened species and help identify inconsistencies among species
experiencing significant range declines —such as great bustard, pin-
tailed sandgrouse, and European roller— that are not currently listed
as threatened by the IUCN at the European level.

Our expert-based threat assessment revealed that land use change is
widely recognized as a main threat to steppe birds. The intensification
and abandonment of land are opposing processes that, along with
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infrastructure development, drive habitat loss and fragmentation for
steppe birds. Climate change has also emerged as a critical concern,
altering habitat conditions and exacerbating the challenges faced by
steppe ecosystems. As a large-scale driver, climate change could
contribute significantly to population declines (e.g., Illera et al., 2024),
affecting a substantial proportion of steppe bird species. However, po-
tential positive effects have also been reported, warranting further
investigation (e.g., Ramon-Martinez and Seoane, 2024). Additionally,
human-induced mortality and unsustainable hunting exacerbate these
threats. In contrast, invasive species and unsustainable exploitation
appear to have a limited impact on steppe bird population declines, at
least in the mainland. Despite progress in understanding these threats,
significant knowledge gaps persist. In particular, the species-specific
effects of climate change and pollutants—such as pesticides and fertil-
izers from intensive agriculture—remain poorly understood. These
pollutants can accumulate in the environment, persisting over time, and
cause severe and long-lasting damage to biodiversity (Geiger et al.,
2010; Tonelli et al., 2017). Furthermore, there are significant data gaps
concerning threats to specific species, including black-eared wheatear,
Iberian grey shrike, thekla lark, stone curlew, and black-bellied sand-
grouse. Targeted research efforts are urgently needed to fill these gaps,
provide a more comprehensive basis for conservation strategies, and
ensure the long-term persistence of these vulnerable species.

Overall, this review highlights that the conservation of steppe birds is
an urgent challenge in the face of escalating global change drivers. Given
the socio-ecological nature of steppe habitats, conservation strategies
must be integrated with key human activities, such as agricultural
management through the Common Agricultural Policy (Diaz et al.,
2021; Pozuelo et al., 2024). However, the lack of comprehensive sci-
entific evidence in many regions hampers effective conservation plan-
ning (Diaz et al., 2021; Pozuelo et al., 2024). The results presented here
can help prioritize species, threats, and ecological factors that should be
the focus of future research and conservation efforts. To tackle imminent
threats such as land use changes, conservation actions must be based on
solid, evidence-driven frameworks. Moreover, the role of administra-
tions is critical in implementing land-use planning that balances human
development and biodiversity conservation. This includes prohibiting
harmful activities in sensitive areas while incentivizing sustainable
practices that benefit wildlife. Ultimately, achieving long-term resil-
ience of steppe ecosystems requires the active collaboration of scientists,
policymakers, and local communities, using socio-ecosystem ap-
proaches that reflect the interconnectedness of human and environ-
mental well-being (Pérez-Granados et al., 2025).
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